数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{({x}^{3} - 2x + 1)}{({x}^{2} - 7)})}^{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}\right)}{dx}\\=&((\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}((1)ln(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)}) + \frac{(x)((\frac{-(2x + 0)}{(x^{2} - 7)^{2}})x^{3} + \frac{3x^{2}}{(x^{2} - 7)} - 2(\frac{-(2x + 0)}{(x^{2} - 7)^{2}})x - \frac{2}{(x^{2} - 7)} + (\frac{-(2x + 0)}{(x^{2} - 7)^{2}}))}{(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})}))\\=&(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}ln(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)}) - \frac{2x^{5}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}}{(x^{2} - 7)^{2}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})} + \frac{3x^{3}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}}{(x^{2} - 7)(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})} + \frac{4x^{3}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}}{(x^{2} - 7)^{2}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})} - \frac{2x(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}}{(x^{2} - 7)(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})} - \frac{2x^{2}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})^{x}}{(x^{2} - 7)^{2}(\frac{x^{3}}{(x^{2} - 7)} - \frac{2x}{(x^{2} - 7)} + \frac{1}{(x^{2} - 7)})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回