数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{(\frac{{a}^{x}}{2} + \frac{{b}^{x}}{2})}^{\frac{1}{x}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}\right)}{dx}\\=&((\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x}) + \frac{(\frac{1}{x})(\frac{1}{2}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})) + \frac{1}{2}({b}^{x}((1)ln(b) + \frac{(x)(0)}{(b)})))}{(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})}))\\=&\frac{-(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}ln(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})}{x^{2}} + \frac{{a}^{x}(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}ln(a)}{2(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})x} + \frac{{b}^{x}(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})^{\frac{1}{x}}ln(b)}{2(\frac{1}{2}{a}^{x} + \frac{1}{2}{b}^{x})x}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回