数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 m 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{147.255}{(1 + e^{3.831 - 0.379m})} 关于 m 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{147.255}{(e^{-0.379m + 3.831} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{147.255}{(e^{-0.379m + 3.831} + 1)}\right)}{dm}\\=&147.255(\frac{-(e^{-0.379m + 3.831}(-0.379 + 0) + 0)}{(e^{-0.379m + 3.831} + 1)^{2}})\\=&\frac{55.809645e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{55.809645e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)}\right)}{dm}\\=&\frac{55.809645(\frac{-(e^{-0.379m + 3.831}(-0.379 + 0) + 0)}{(e^{-0.379m + 3.831} + 1)^{2}})e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)} + \frac{55.809645(\frac{-(e^{-0.379m + 3.831}(-0.379 + 0) + 0)}{(e^{-0.379m + 3.831} + 1)^{2}})e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)} + \frac{55.809645e^{-0.379m + 3.831}(-0.379 + 0)}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)}\\=&\frac{21.151855455e^{-0.379m + 3.831}e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)} + \frac{21.151855455e^{-0.379m + 3.831}e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)} - \frac{21.151855455e^{-0.379m + 3.831}}{(e^{-0.379m + 3.831} + 1)(e^{-0.379m + 3.831} + 1)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回