数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数8ln(\frac{(sqrt({x}^{4} + 1) - 1)}{(sqrt({x}^{4} + 1) + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 8ln(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 8ln(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})\right)}{dx}\\=&\frac{8((\frac{-(\frac{(4x^{3} + 0)*\frac{1}{2}}{(x^{4} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(x^{4} + 1) + 1)^{2}})sqrt(x^{4} + 1) + \frac{(4x^{3} + 0)*\frac{1}{2}}{(sqrt(x^{4} + 1) + 1)(x^{4} + 1)^{\frac{1}{2}}} - (\frac{-(\frac{(4x^{3} + 0)*\frac{1}{2}}{(x^{4} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(x^{4} + 1) + 1)^{2}}))}{(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})}\\=&\frac{-16x^{3}sqrt(x^{4} + 1)}{(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})(sqrt(x^{4} + 1) + 1)^{2}(x^{4} + 1)^{\frac{1}{2}}} + \frac{16x^{3}}{(sqrt(x^{4} + 1) + 1)(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})(x^{4} + 1)^{\frac{1}{2}}} + \frac{16x^{3}}{(\frac{sqrt(x^{4} + 1)}{(sqrt(x^{4} + 1) + 1)} - \frac{1}{(sqrt(x^{4} + 1) + 1)})(sqrt(x^{4} + 1) + 1)^{2}(x^{4} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回