数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数a(7bkh - h{x}^{2}{n}^{2}) + \frac{b(x + y + z)(bkh - h{w}^{2} - k{x}^{2}{n}^{2})(8bkh - 2h{w}^{2} - k{x}^{2}{n}^{2})}{b} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 7abkh - ahn^{2}x^{2} + 8b^{2}k^{2}h^{2}x - 10bkh^{2}w^{2}x - 9bk^{2}hn^{2}x^{3} + 2h^{2}w^{4}x + 3khn^{2}w^{2}x^{3} + k^{2}n^{4}x^{5} - 10bkh^{2}yw^{2} + 8b^{2}k^{2}h^{2}y - 9bk^{2}hn^{2}yx^{2} + 2h^{2}yw^{4} + 3khn^{2}yw^{2}x^{2} + k^{2}n^{4}yx^{4} - 10bkh^{2}zw^{2} + 8b^{2}k^{2}h^{2}z - 9bk^{2}hn^{2}zx^{2} + 2h^{2}zw^{4} + 3khn^{2}zw^{2}x^{2} + k^{2}n^{4}zx^{4}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 7abkh - ahn^{2}x^{2} + 8b^{2}k^{2}h^{2}x - 10bkh^{2}w^{2}x - 9bk^{2}hn^{2}x^{3} + 2h^{2}w^{4}x + 3khn^{2}w^{2}x^{3} + k^{2}n^{4}x^{5} - 10bkh^{2}yw^{2} + 8b^{2}k^{2}h^{2}y - 9bk^{2}hn^{2}yx^{2} + 2h^{2}yw^{4} + 3khn^{2}yw^{2}x^{2} + k^{2}n^{4}yx^{4} - 10bkh^{2}zw^{2} + 8b^{2}k^{2}h^{2}z - 9bk^{2}hn^{2}zx^{2} + 2h^{2}zw^{4} + 3khn^{2}zw^{2}x^{2} + k^{2}n^{4}zx^{4}\right)}{dx}\\=&0 - ahn^{2}*2x + 8b^{2}k^{2}h^{2} - 10bkh^{2}w^{2} - 9bk^{2}hn^{2}*3x^{2} + 2h^{2}w^{4} + 3khn^{2}w^{2}*3x^{2} + k^{2}n^{4}*5x^{4} + 0 + 0 - 9bk^{2}hn^{2}y*2x + 0 + 3khn^{2}yw^{2}*2x + k^{2}n^{4}y*4x^{3} + 0 + 0 - 9bk^{2}hn^{2}z*2x + 0 + 3khn^{2}zw^{2}*2x + k^{2}n^{4}z*4x^{3}\\=& - 2ahn^{2}x - 10bkh^{2}w^{2} - 27bk^{2}hn^{2}x^{2} - 18bk^{2}hn^{2}yx + 2h^{2}w^{4} + 9khn^{2}w^{2}x^{2} + 5k^{2}n^{4}x^{4} - 18bk^{2}hn^{2}zx + 6khn^{2}yw^{2}x + 4k^{2}n^{4}yx^{3} + 8b^{2}k^{2}h^{2} + 6khn^{2}zw^{2}x + 4k^{2}n^{4}zx^{3}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回