总述:本次共解1题。其中
☆整数计算1题
〖1/1整数列竖式计算〗
题型:整数乘法
原题:0985008687907853269984665640564039457584007913129639936*0985008687907853269984665640564039457584007913129639936Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -2arcsin(sqrt(\frac{(1 - x)}{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -2arcsin(sqrt(\frac{-1}{2}x + \frac{1}{2}))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -2arcsin(sqrt(\frac{-1}{2}x + \frac{1}{2}))\right)}{dx}\\=&-2(\frac{(\frac{(\frac{-1}{2} + 0)*\frac{1}{2}}{(\frac{-1}{2}x + \frac{1}{2})^{\frac{1}{2}}})}{((1 - (sqrt(\frac{-1}{2}x + \frac{1}{2}))^{2})^{\frac{1}{2}})})\\=&\frac{1}{2(-sqrt(\frac{-1}{2}x + \frac{1}{2})^{2} + 1)^{\frac{1}{2}}(\frac{-1}{2}x + \frac{1}{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!