数学
         
语言:中文    Language:English
数学计算:
    直接输入数学计算式,点击“下一步”按钮,即可获得计算答案。
    它支持数学函数(包括三角函数)。
    当前位置:数学运算 > 数学计算史 > 答案

    总述:本次共解1题。其中
           ☆整数计算1题

〖1/1整数列竖式计算〗
    题型:整数乘法
    原题:9137387203650107299993809500432559730753862605349934298300416*9137387203650107299993809500432559730753862605349934298split}【1/1】求函数{(1 + ln(x))}^{sqrt(2)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (ln(x) + 1)^{sqrt(2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (ln(x) + 1)^{sqrt(2)}\right)}{dx}\\=&((ln(x) + 1)^{sqrt(2)}((0*\frac{1}{2}*2^{\frac{1}{2}})ln(ln(x) + 1) + \frac{(sqrt(2))(\frac{1}{(x)} + 0)}{(ln(x) + 1)}))\\=&\frac{(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x}\right)}{dx}\\=&\frac{(\frac{-(\frac{1}{(x)} + 0)}{(ln(x) + 1)^{2}})(ln(x) + 1)^{sqrt(2)}sqrt(2)}{x} + \frac{-(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x^{2}} + \frac{((ln(x) + 1)^{sqrt(2)}((0*\frac{1}{2}*2^{\frac{1}{2}})ln(ln(x) + 1) + \frac{(sqrt(2))(\frac{1}{(x)} + 0)}{(ln(x) + 1)}))sqrt(2)}{(ln(x) + 1)x} + \frac{(ln(x) + 1)^{sqrt(2)}*0*\frac{1}{2}*2^{တ
    解:
    9137387203650107299993809500432559730753862605349934298300416*9137387203650107299993809500432559730753862605349934298300416&nsplit}【1/1】求函数{(1 + ln(x))}^{sqrt(2)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (ln(x) + 1)^{sqrt(2)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (ln(x) + 1)^{sqrt(2)}\right)}{dx}\\=&((ln(x) + 1)^{sqrt(2)}((0*\frac{1}{2}*2^{\frac{1}{2}})ln(ln(x) + 1) + \frac{(sqrt(2))(\frac{1}{(x)} + 0)}{(ln(x) + 1)}))\\=&\frac{(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x}\right)}{dx}\\=&\frac{(\frac{-(\frac{1}{(x)} + 0)}{(ln(x) + 1)^{2}})(ln(x) + 1)^{sqrt(2)}sqrt(2)}{x} + \frac{-(ln(x) + 1)^{sqrt(2)}sqrt(2)}{(ln(x) + 1)x^{2}} + \frac{((ln(x) + 1)^{sqrt(2)}((0*\frac{1}{2}*2^{\frac{1}{2}})ln(ln(x) + 1) + \frac{(sqrt(2))(\frac{1}{(x)} + 0)}{(ln(x) + 1)}))sqrt(2)}{(ln(x) + 1)x} + \frac{(ln(x) + 1)^{sqrt(2)}*0*\frac{1}{2}*2^{တ83491844909428727456503273318449829518728098225472593632392678647396868643349179648430125596209011369814364528226185773056
    列竖式计算:
                                                                  9137387203650107299993809500432559730753862605349934298300416
                                                                 9137387203650107299993809500432559730753862605349934298300416

                                                                 54824323221900643799962857002595358384523175632099605789802496
                                                                 9137387203650107299993809500432559730753862605349934298300416 
                                                               36549548814600429199975238001730238923015450421399737193201664  
                                                               0000000000000000000000000000000000000000000000000000000000000   
                                                              0000000000000000000000000000000000000000000000000000000000000    
                                                            27412161610950321899981428501297679192261587816049802894901248     
                                                           73099097629200858399950476003460477846030900842799474386403328      
                                                          82236484832850965699944285503893037576784763448149408684703744       
                                                         18274774407300214599987619000865119461507725210699868596600832        
                                                        36549548814600429199975238001730238923015450421399737193201664         
                                                       27412161610950321899981428501297679192261587816049802894901248          
                                                      82236484832850965699944285503893037576784763448149408684703744           
                                                     82236484832850965699944285503893037576784763448149408684703744            
                                                    36549548814600429199975238001730238923015450421399737193201664             
                                                   27412161610950321899981428501297679192261587816049802894901248              
                                                  45686936018250536499969047502162798653769313026749671491502080               
                                                  0000000000000000000000000000000000000000000000000000000000000                
                                                54824323221900643799962857002595358384523175632099605789802496                 
                                               18274774407300214599987619000865119461507725210699868596600832                  
                                              54824323221900643799962857002595358384523175632099605789802496                   
                                             73099097629200858399950476003460477846030900842799474386403328                    
                                            27412161610950321899981428501297679192261587816049802894901248                     
                                           45686936018250536499969047502162798653769313026749671491502080                      
                                          63961710425550751099956666503027918115277038237449540088102912                       
                                          0000000000000000000000000000000000000000000000000000000000000                        
                                        27412161610950321899981428501297679192261587816049802894901248                         
                                       63961710425550751099956666503027918115277038237449540088102912                          
                                      82236484832850965699944285503893037576784763448149408684703744                           
                                     45686936018250536499969047502162798653769313026749671491502080                            
                                    45686936018250536499969047502162798653769313026749671491502080                             
                                   18274774407300214599987619000865119461507725210699868596600832                              
                                  27412161610950321899981428501297679192261587816049802894901248                               
                                 36549548814600429199975238001730238923015450421399737193201664                                
                                 0000000000000000000000000000000000000000000000000000000000000                                 
                                0000000000000000000000000000000000000000000000000000000000000                                  
                              45686936018250536499969047502162798653769313026749671491502080                                   
                             82236484832850965699944285503893037576784763448149408684703744                                    
                             0000000000000000000000000000000000000000000000000000000000000                                     
                           73099097629200858399950476003460477846030900842799474386403328                                      
                          27412161610950321899981428501297679192261587816049802894901248                                       
                         82236484832850965699944285503893037576784763448149408684703744                                        
                        82236484832850965699944285503893037576784763448149408684703744                                         
                       82236484832850965699944285503893037576784763448149408684703744                                          
                      82236484832850965699944285503893037576784763448149408684703744                                           
                     18274774407300214599987619000865119461507725210699868596600832                                            
                    63961710425550751099956666503027918115277038237449540088102912                                             
                    0000000000000000000000000000000000000000000000000000000000000                                              
                   9137387203650107299993809500432559730753862605349934298300416                                               
                  0000000000000000000000000000000000000000000000000000000000000                                                
                45686936018250536499969047502162798653769313026749671491502080                                                 
               54824323221900643799962857002595358384523175632099605789802496                                                  
              27412161610950321899981428501297679192261587816049802894901248                                                   
              0000000000000000000000000000000000000000000000000000000000000                                                    
            18274774407300214599987619000865119461507725210699868596600832                                                     
           63961710425550751099956666503027918115277038237449540088102912                                                      
          73099097629200858399950476003460477846030900842799474386403328                                                       
         27412161610950321899981428501297679192261587816049802894901248                                                        
        63961710425550751099956666503027918115277038237449540088102912                                                         
       27412161610950321899981428501297679192261587816049802894901248                                                          
       9137387203650107299993809500432559730753862605349934298300416                                                           
     82236484832850965699944285503893037576784763448149408684703744                                                            

     83491844909428727456503273318449829518728098225472593632392678647396868643349179648430125596209011369814364528226185773056



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。