本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数78.11 - \frac{52.91}{({e}^{(\frac{(x - 6.4)}{1.49})} + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - \frac{52.91}{({e}^{(0.671140939597315x - 4.29530201342282)} + 1)} + 78.11\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - \frac{52.91}{({e}^{(0.671140939597315x - 4.29530201342282)} + 1)} + 78.11\right)}{dx}\\=& - 52.91(\frac{-(({e}^{(0.671140939597315x - 4.29530201342282)}((0.671140939597315 + 0)ln(e) + \frac{(0.671140939597315x - 4.29530201342282)(0)}{(e)})) + 0)}{({e}^{(0.671140939597315x - 4.29530201342282)} + 1)^{2}}) + 0\\=& - \frac{-35.510067114094{e}^{(0.671140939597315x - 4.29530201342282)}}{({e}^{(0.671140939597315x - 4.29530201342282)} + 1)({e}^{(0.671140939597315x - 4.29530201342282)} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!