数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数arcsin(sqrt(1 - 4{x}^{2})) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(sqrt(-4x^{2} + 1))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(sqrt(-4x^{2} + 1))\right)}{dx}\\=&(\frac{(\frac{(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}})}{((1 - (sqrt(-4x^{2} + 1))^{2})^{\frac{1}{2}})})\\=&\frac{-4x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-4x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-4(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{4(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{16(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x^{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16*2x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{16(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16*2x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{4(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32x}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32x}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32x}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32x}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{-192(\frac{\frac{-5}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{7}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{192(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}} - \frac{192*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{128(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{128*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{32(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{32}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{192(\frac{\frac{-5}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{7}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{192*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{32(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{32}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{16(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3840x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{7}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{2304x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{576x^{2}}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}} + \frac{2304x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} + \frac{640x^{2}}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{576x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{3840x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{7}{2}}} - \frac{960x^{2}}{(-4x^{2} + 1)^{\frac{5}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} + \frac{32}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{32}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。