本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({(6x)}^{\frac{1}{2}} + 13x)}^{-6}{(5{x}^{6} - 5x)}^{6} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(5x^{6} - 5x)^{6}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(5x^{6} - 5x)^{6}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}}\right)}{dx}\\=&(\frac{-6(\frac{6^{\frac{1}{2}}*\frac{1}{2}}{x^{\frac{1}{2}}} + 13)}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{7}})(5x^{6} - 5x)^{6} + \frac{(6(5x^{6} - 5x)^{5}(5*6x^{5} - 5))}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}}\\=&\frac{-3*6^{\frac{1}{2}}(5x^{6} - 5x)^{6}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{7}x^{\frac{1}{2}}} - \frac{78(5x^{6} - 5x)^{6}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{7}} + \frac{562500x^{35}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} - \frac{2906250x^{30}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} + \frac{6093750x^{25}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} - \frac{6562500x^{20}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} + \frac{3750000x^{15}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} - \frac{1031250x^{10}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}} + \frac{93750x^{5}}{(6^{\frac{1}{2}}x^{\frac{1}{2}} + 13x)^{6}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!