数学
         
语言:中文    Language:English
                                在线解方程   
展开
                                数学运算      
展开
                                线性代数      
展开
                                求导函数
                                函数图像
                                热门问题
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数sqrt(2)sqrt((\frac{(3)}{(4)}) - {(sqrt(2) - x)}^{2})(sqrt((\frac{(3)}{(4)}) - {x}^{2}) - {x}^{2}) + x({x}^{2}sqrt((\frac{(3)}{(4)}) - {(sqrt(2) - x)}^{2}) - sqrt((\frac{(3)}{(4)}) - {x}^{2}){(sqrt(2) - x)}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(2)sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(-x^{2} + \frac{3}{4}) - x^{2}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(2) - xsqrt(2)^{2}sqrt(-x^{2} + \frac{3}{4}) + 2x^{2}sqrt(2)sqrt(-x^{2} + \frac{3}{4}) + x^{3}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4}) - x^{3}sqrt(-x^{2} + \frac{3}{4})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(2)sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(-x^{2} + \frac{3}{4}) - x^{2}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(2) - xsqrt(2)^{2}sqrt(-x^{2} + \frac{3}{4}) + 2x^{2}sqrt(2)sqrt(-x^{2} + \frac{3}{4}) + x^{3}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4}) - x^{3}sqrt(-x^{2} + \frac{3}{4})\right)}{dx}\\=&0*\frac{1}{2}*2^{\frac{1}{2}}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(-x^{2} + \frac{3}{4}) + \frac{sqrt(2)(-2(2)^{\frac{1}{2}}*0*\frac{1}{2}*2^{\frac{1}{2}} + 2sqrt(2) + 2x*0*\frac{1}{2}*2^{\frac{1}{2}} - 2x + 0)*\frac{1}{2}sqrt(-x^{2} + \frac{3}{4})}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} + \frac{sqrt(2)sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})(-2x + 0)*\frac{1}{2}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} - 2xsqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(2) - \frac{x^{2}(-2(2)^{\frac{1}{2}}*0*\frac{1}{2}*2^{\frac{1}{2}} + 2sqrt(2) + 2x*0*\frac{1}{2}*2^{\frac{1}{2}} - 2x + 0)*\frac{1}{2}sqrt(2)}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - x^{2}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})*0*\frac{1}{2}*2^{\frac{1}{2}} - sqrt(2)^{2}sqrt(-x^{2} + \frac{3}{4}) - x*2(2)^{\frac{1}{2}}*0*\frac{1}{2}*2^{\frac{1}{2}}sqrt(-x^{2} + \frac{3}{4}) - \frac{xsqrt(2)^{2}(-2x + 0)*\frac{1}{2}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} + 2*2xsqrt(2)sqrt(-x^{2} + \frac{3}{4}) + 2x^{2}*0*\frac{1}{2}*2^{\frac{1}{2}}sqrt(-x^{2} + \frac{3}{4}) + \frac{2x^{2}sqrt(2)(-2x + 0)*\frac{1}{2}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} + 3x^{2}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4}) + \frac{x^{3}(-2(2)^{\frac{1}{2}}*0*\frac{1}{2}*2^{\frac{1}{2}} + 2sqrt(2) + 2x*0*\frac{1}{2}*2^{\frac{1}{2}} - 2x + 0)*\frac{1}{2}}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - 3x^{2}sqrt(-x^{2} + \frac{3}{4}) - \frac{x^{3}(-2x + 0)*\frac{1}{2}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}}\\=&\frac{sqrt(2)^{2}sqrt(-x^{2} + \frac{3}{4})}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - \frac{xsqrt(2)sqrt(-x^{2} + \frac{3}{4})}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - \frac{xsqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(2)}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} - 2xsqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})sqrt(2) - \frac{x^{2}sqrt(2)^{2}}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} + \frac{2x^{3}sqrt(2)}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - sqrt(2)^{2}sqrt(-x^{2} + \frac{3}{4}) + \frac{x^{2}sqrt(2)^{2}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} + 4xsqrt(2)sqrt(-x^{2} + \frac{3}{4}) - \frac{2x^{3}sqrt(2)}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}} + 3x^{2}sqrt(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4}) - \frac{x^{4}}{(-sqrt(2)^{2} + 2xsqrt(2) - x^{2} + \frac{3}{4})^{\frac{1}{2}}} - 3x^{2}sqrt(-x^{2} + \frac{3}{4}) + \frac{x^{4}}{(-x^{2} + \frac{3}{4})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





    最  新  发  

  新增加身体健康评估计算器,位置:“数学运算 > 身体健康评估”。

  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。