本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{e^{\frac{-{(nx - 3.756)}^{2}{0.5261}^{2}}{2}}}{(sqrt(2*3.14)x*0.5261)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1.900779319521e^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1.900779319521e^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\right)}{dx}\\=&\frac{1.900779319521*-e^{-0.26305nx + 0.9880158}}{x^{2}sqrt(6.28)} + \frac{1.900779319521e^{-0.26305nx + 0.9880158}(-0.26305n + 0)}{xsqrt(6.28)} + \frac{1.900779319521e^{-0.26305nx + 0.9880158}*-*0*0.5*6.28^{\frac{1}{2}}}{x(6.28)}\\=&\frac{-1.900779319521e^{-0.26305nx + 0.9880158}}{x^{2}sqrt(6.28)} - \frac{0.5ne^{-0.26305nx + 0.9880158}}{xsqrt(6.28)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!