本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x) + sqrt(4 - cos(x)cos(x)) 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x) + sqrt(-cos^{2}(x) + 4)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x) + sqrt(-cos^{2}(x) + 4)\right)}{dx}\\=&cos(x) + \frac{(--2cos(x)sin(x) + 0)*\frac{1}{2}}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\=&cos(x) + \frac{sin(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( cos(x) + \frac{sin(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\right)}{dx}\\=&-sin(x) + (\frac{\frac{-1}{2}(--2cos(x)sin(x) + 0)}{(-cos^{2}(x) + 4)^{\frac{3}{2}}})sin(x)cos(x) + \frac{cos(x)cos(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}} + \frac{sin(x)*-sin(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\=&-sin(x) - \frac{sin^{2}(x)cos^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{3}{2}}} + \frac{cos^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}} - \frac{sin^{2}(x)}{(-cos^{2}(x) + 4)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!