本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x){\frac{1}{x}}^{2} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{x^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{x^{2}}\right)}{dx}\\=&\frac{-2sin(x)}{x^{3}} + \frac{cos(x)}{x^{2}}\\=&\frac{-2sin(x)}{x^{3}} + \frac{cos(x)}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-2sin(x)}{x^{3}} + \frac{cos(x)}{x^{2}}\right)}{dx}\\=&\frac{-2*-3sin(x)}{x^{4}} - \frac{2cos(x)}{x^{3}} + \frac{-2cos(x)}{x^{3}} + \frac{-sin(x)}{x^{2}}\\=&\frac{6sin(x)}{x^{4}} - \frac{4cos(x)}{x^{3}} - \frac{sin(x)}{x^{2}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{6sin(x)}{x^{4}} - \frac{4cos(x)}{x^{3}} - \frac{sin(x)}{x^{2}}\right)}{dx}\\=&\frac{6*-4sin(x)}{x^{5}} + \frac{6cos(x)}{x^{4}} - \frac{4*-3cos(x)}{x^{4}} - \frac{4*-sin(x)}{x^{3}} - \frac{-2sin(x)}{x^{3}} - \frac{cos(x)}{x^{2}}\\=&\frac{-24sin(x)}{x^{5}} + \frac{18cos(x)}{x^{4}} + \frac{6sin(x)}{x^{3}} - \frac{cos(x)}{x^{2}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-24sin(x)}{x^{5}} + \frac{18cos(x)}{x^{4}} + \frac{6sin(x)}{x^{3}} - \frac{cos(x)}{x^{2}}\right)}{dx}\\=&\frac{-24*-5sin(x)}{x^{6}} - \frac{24cos(x)}{x^{5}} + \frac{18*-4cos(x)}{x^{5}} + \frac{18*-sin(x)}{x^{4}} + \frac{6*-3sin(x)}{x^{4}} + \frac{6cos(x)}{x^{3}} - \frac{-2cos(x)}{x^{3}} - \frac{-sin(x)}{x^{2}}\\=&\frac{120sin(x)}{x^{6}} - \frac{96cos(x)}{x^{5}} - \frac{36sin(x)}{x^{4}} + \frac{8cos(x)}{x^{3}} + \frac{sin(x)}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!