总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 cos(arcsin(8/(2+10)))*(2+10)-cos(arcsin(8/(10-2)))*(10-2) 的值.
题型:数学计算
解:
cos(arcsin(8/(2+10)))*(2+10)-cos(arcsin(8/(10-2)))*(10-2)
=cos(arcsin(8/12))*(2+10)-cos(arcsin(8/(10-2)))*(10-2)
=cos(arcsin0.666667)*(2+10)-cos(arcsin(8/(10-2)))*(10-2)
=cos0.729728*(2+10)-cos(arcsin(8/(10-2)))*(10-2)
=cos0.729728*12-cos(arcsin(8/(10-2)))*(10-2)
=cos0.729728*12-cos(arcsin(8/8))*(10-2)
=cos0.729728*12-cos(arcsin1)*(10-2)
=cos0.729728*12-cos1.570796*(10-2)
=cos0.729728*12-cos1.570796*8
=0.745356*12-cos1.570796*8
=0.745356*12-0*8
=8.944272-0*8
=8.944272-0
=8.944272 答案:cos(arcsin(8/(2+10)))*(2+10)-cos(arcsin(8/(10-2)))*(10-2)=8.944272 注:弧度制你的问题在这里没有得到解决?请到 热门难题 里面看看吧!