总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 cos(arcsin(5/(2+10)))*(2+10)-cos(arcsin(5/(10-2)))*(10-2) 的值.
题型:数学计算
解:
cos(arcsin(5/(2+10)))*(2+10)-cos(arcsin(5/(10-2)))*(10-2)
=cos(arcsin(5/12))*(2+10)-cos(arcsin(5/(10-2)))*(10-2)
=cos(arcsin0.416667)*(2+10)-cos(arcsin(5/(10-2)))*(10-2)
=cos0.429776*(2+10)-cos(arcsin(5/(10-2)))*(10-2)
=cos0.429776*12-cos(arcsin(5/(10-2)))*(10-2)
=cos0.429776*12-cos(arcsin(5/8))*(10-2)
=cos0.429776*12-cos(arcsin0.625)*(10-2)
=cos0.429776*12-cos0.675132*(10-2)
=cos0.429776*12-cos0.675132*8
=0.909059*12-cos0.675132*8
=0.909059*12-0.780624*8
=10.908708-0.780624*8
=10.908708-6.244992
=4.663716 答案:cos(arcsin(5/(2+10)))*(2+10)-cos(arcsin(5/(10-2)))*(10-2)=4.663716 注:弧度制你的问题在这里没有得到解决?请到 热门难题 里面看看吧!