总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 cos(arcsin(4/(2+10)))*(2+10)-cos(arcsin(4/(10-2)))*(10-2) 的值.
题型:数学计算
解:
cos(arcsin(4/(2+10)))*(2+10)-cos(arcsin(4/(10-2)))*(10-2)
=cos(arcsin(4/12))*(2+10)-cos(arcsin(4/(10-2)))*(10-2)
=cos(arcsin0.333333)*(2+10)-cos(arcsin(4/(10-2)))*(10-2)
=cos0.339837*(2+10)-cos(arcsin(4/(10-2)))*(10-2)
=cos0.339837*12-cos(arcsin(4/(10-2)))*(10-2)
=cos0.339837*12-cos(arcsin(4/8))*(10-2)
=cos0.339837*12-cos(arcsin0.5)*(10-2)
=cos0.339837*12-cos0.523599*(10-2)
=cos0.339837*12-cos0.523599*8
=0.942809*12-cos0.523599*8
=0.942809*12-0.866025*8
=11.313708-0.866025*8
=11.313708-6.9282
=4.385508 答案:cos(arcsin(4/(2+10)))*(2+10)-cos(arcsin(4/(10-2)))*(10-2)=4.385508 注:弧度制你的问题在这里没有得到解决?请到 热门难题 里面看看吧!