4 | = | ( | 4 | ÷ | 3 | × | k | ) | ( | 4 | ÷ | 3 | × | k | ) | + | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) | ) |
4 | = | 4 | ÷ | 3 | × | k | ( | 4 | ÷ | 3 | × | k | ) | + | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) | ) |
4 | = | 4 3 | k | ( | 4 | ÷ | 3 | × | k | ) | + | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) | ) |
4 | = | 4 3 | k | × | 4 | ÷ | 3 | × | k | + | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) | ) |
4 | = | 16 9 | k | k | + | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) | ) |
4 | = | 16 9 | k | k | + | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | × | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
方程两边同时乘以: | ( | 3 | k | k | ) |
4 | ( | 3 | k | k | ) | = | 16 9 | k | k | ( | 3 | k | k | ) | + | 3 | ( | 3 | k | k | ) | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
4 | × | 3 | k | k | = | 16 9 | k | k | ( | 3 | k | k | ) | + | 3 | ( | 3 | k | k | ) | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
4 | × | 3 | k | k | = | 16 9 | k | k | × | 3 | k | k | + | 3 | ( | 3 | k | k | ) | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
12 | k | k | = | 16 3 | k | k | k | k | + | 3 | ( | 3 | k | k | ) | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
12 | k | k | = | 16 3 | k | k | k | k | + | 3 | × | 3 | k | k | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
12 | k | k | = | 16 3 | k | k | k | k | + | 9 | k | k | − | 4 | ( | 3 | − | 4 | ÷ | ( | 3 | k | k | ) | ) |
12 | k | k | = | 16 3 | k | k | k | k | + | 9 | k | k | − | 4 | × | 3 | + | 4 | × | 4 |
12 | k | k | = | 16 3 | k | k | k | k | + | 9 | k | k | − | 12 | + | 16 | ÷ | ( | 3 | k | k | ) |
方程两边同时乘以: | ( | 3 | k | k | ) |
12 | k | k | ( | 3 | k | k | ) | = | 16 3 | k | k | k | k | ( | 3 | k | k | ) | + | 9 | k | k | ( | 3 | k | k | ) | − | 12 | ( | 3 | k | k | ) |
12 | k | k | × | 3 | k | k | = | 16 3 | k | k | k | k | ( | 3 | k | k | ) | + | 9 | k | k | ( | 3 | k | k | ) | − | 12 | ( | 3 | k | k | ) |
12 | k | k | × | 3 | k | k | = | 16 3 | k | k | k | k | × | 3 | k | k | + | 9 | k | k | ( | 3 | k | k | ) |
36 | k | k | k | k | = | 16 | k | k | k | k | k | k | + | 9 | k | k | ( | 3 | k | k | ) | − | 12 |
36 | k | k | k | k | = | 16 | k | k | k | k | k | k | + | 9 | k | k | × | 3 | k |
36 | k | k | k | k | = | 16 | k | k | k | k | k | k | + | 27 | k | k | k | k |
36 | k | k | k | k | = | 16 | k | k | k | k | k | k | + | 27 | k | k | k | k |
36 | k | k | k | k | = | 16 | k | k | k | k | k | k | + | 27 | k | k | k | k |