1064 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 12 | ) | ) | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 12 | ) | ) |
1064 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 12 | ) | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 12 | ) | ) |
1064 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | 1 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 12 | ) | ) |
1064 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | 1 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | = | - | 900 | × | 1 | − | 900 | ( | x | ÷ | 12 | × | 12 | ) |
1064 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | = | - | 900 | − | 900 | ( | x | ÷ | 12 | × | 12 | ) |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1064 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1064 | × | 1 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1064 | × | 1 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | × | 1 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1064 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | × | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | × | 1 | + | 1014 | ( | x | ÷ | 12 | × | 2 | ) | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | × | 1 | + | 1014 | ( | x | ÷ | 12 | × | 2 | ) | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | × | 1 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 1014 | ( | x | ÷ | 12 | × | 2 | ) | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 1014 | x | ÷ | 12 | × | 2 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 1014 | x | ÷ | 12 | × | 2 | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 900 | x | ÷ | 12 | × | 2 | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 1064 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 1064 | x | ÷ | 12 | × | 2 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 900 | ( | x | ÷ | 12 | × | 2 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 1064 | x | ÷ | 12 | × | 2 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 900 | x | ÷ | 12 | × | 2 | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 532 3 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 150 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 532 3 | x | × | 1 | + | 532 3 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 150 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 532 3 | x | × | 1 | + | 532 3 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 150 | x | × | 1 | − | 150 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 169 | x | + | 532 3 | x | + | 532 3 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 150 | x | − | 150 | x | − | 150 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |
1014 | + | 1039 3 | x | + | 532 3 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 50 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | = | - | 900 | − | 300 | x | − | 150 | x | ( | x | ÷ | 12 | × | 2 | ) | − | 900 | ( | x | ÷ | 12 | × | 12 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 2 | ) | ) |