- | 1166 | + | 3606 5 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 22237 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) |
- | 1166 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 3606 5 | + | 22237 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 1166 | × | 1 | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | + | 3606 5 | + | 22237 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 1166 | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | + | 3606 5 | + | 22237 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | + | 22237 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) |
- | 2224 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
- | 2224 5 | × | 1 | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | + | 1803 50 | ÷ | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | × | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
方程两边同时乘以: | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) |
- | 2224 5 | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | × | 1 | − | 2224 5 | ( | x | ÷ | 12 | × | 18 | ) | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | = | 0 |
- | 2224 5 | − | 2224 5 | ( | x | ÷ | 12 | × | 18 | ) | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 2224 5 | x | ÷ | 12 | × | 18 | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | − | 3336 5 | x | − | 2224 5 | ( | x | ÷ | 12 | × | 6 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 3336 5 | x | − | 2224 5 | x | ÷ | 12 | × | 6 | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | − | 3336 5 | x | − | 1112 5 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 3336 5 | x | − | 1112 5 | x | × | 1 | − | 1112 5 | x | ( | x | ÷ | 12 | × | 18 | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | = | 0 |
- | 2224 5 | − | 3336 5 | x | − | 1112 5 | x | − | 1112 5 | x | ( | x | ÷ | 12 | × | 18 | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1112 5 | x | ( | x | ÷ | 12 | × | 18 | ) | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1112 5 | x | x | ÷ | 12 | × | 18 | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1668 5 | x | x | − | 1166 | ( | x | ÷ | 12 | × | 3 | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1668 5 | x | x | − | 1166 | x | ÷ | 12 | × | 3 | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1668 5 | x | x | − | 583 2 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 6 | ) | ) | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | + | 22237 50 | ( | 1 | + | ( | x | ÷ | 12 | × | 3 | ) | ) | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1668 5 | x | x | − | 583 2 | x | × | 1 | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 583 2 | x | = | 0 |
- | 2224 5 | − | 4448 5 | x | − | 1668 5 | x | x | − | 583 2 | x | ( | 1 | + | ( | x | ÷ | 12 | × | 18 | ) | ) | − | 583 2 | x | ( | x | ÷ | 12 | × | 6 | ) | = | 0 |