4869 20 | = | 27321 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 11 | ) | ) | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) |
| 方程两边同时乘以: | ( | 1 | + | x | ÷ | ( | 12 | × | 11 | ) | ) |
4869 20 | ( | 1 | + | x | ÷ | ( | 12 | × | 11 | ) | ) | = | 27321 100 | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | × | ( | 1 | + | x | ÷ | ( | 12 | × | 11 | ) | ) |
4869 20 | × | 1 | + | 4869 20 | x | ÷ | ( | 12 | × | 11 | ) | = | 27321 100 | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | × | ( | 1 | + | x | ÷ | ( | 12 | × | 11 | ) | ) |
4869 20 | × | 1 | + | 4869 20 | x | ÷ | ( | 12 | × | 11 | ) | = | 27321 100 | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | × | 1 | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | × | x | ÷ | ( | 12 | × | 11 | ) |
4869 20 | + | 4869 20 | x | ÷ | ( | 12 | × | 11 | ) | = | 27321 100 | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | − | 1353 100 | ÷ | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | × | x | ÷ | ( | 12 | × | 11 | ) |
| 方程两边同时乘以: | ( | 12 | × | 11 | ) | , | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) |
4869 20 | ( | 12 | × | 11 | ) | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 27321 100 | ( | 12 | × | 11 | ) | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | − | 1353 100 | ( | 12 | × | 11 | ) | − | 1353 100 | x | ÷ | ( | 12 | × | 11 | ) | × | ( | 12 | × | 11 | ) |
4869 20 | × | 12 | × | 11 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 27321 100 | ( | 12 | × | 11 | ) | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | − | 1353 100 | ( | 12 | × | 11 | ) | − | 1353 100 | x | ÷ | ( | 12 | × | 11 | ) | × | ( | 12 | × | 11 | ) |
4869 20 | × | 12 | × | 11 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 27321 100 | × | 12 | × | 11 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | − | 1353 100 | ( | 12 | × | 11 | ) | − | 1353 100 | x | ÷ | ( | 12 | × | 11 | ) | × | ( | 12 | × | 11 | ) |
160677 5 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 901593 25 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | − | 1353 100 | ( | 12 | × | 11 | ) | − | 1353 100 | x | ÷ | ( | 12 | × | 11 | ) | × | ( | 12 | × | 11 | ) |
| 方程两边同时乘以: | ( | 12 | × | 11 | ) |
160677 5 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 901593 25 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | − | 1353 100 | x | ( | 12 | × | 11 | ) |
160677 5 | × | 1 | ( | 12 | × | 11 | ) | + | 160677 5 | x | ÷ | ( | 12 | × | 8 | ) | × | ( | 12 | × | 11 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 901593 25 | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | − | 1353 100 | x | ( | 12 | × | 11 | ) |
160677 5 | × | 1 | ( | 12 | × | 11 | ) | + | 160677 5 | x | ÷ | ( | 12 | × | 8 | ) | × | ( | 12 | × | 11 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 901593 25 | × | 1 | ( | 12 | × | 11 | ) | + | 901593 25 | x | ÷ | ( | 12 | × | 8 | ) | × | ( | 12 | × | 11 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | − | 1353 100 | x |
160677 5 | ( | 12 | × | 11 | ) | + | 160677 5 | x | ÷ | ( | 12 | × | 8 | ) | × | ( | 12 | × | 11 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 901593 25 | ( | 12 | × | 11 | ) | + | 901593 25 | x | ÷ | ( | 12 | × | 8 | ) | × | ( | 12 | × | 11 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | − | 1353 100 | x | ( | 12 | × | 11 | ) |
| 方程两边同时乘以: | ( | 12 | × | 8 | ) | , | ( | 12 | × | 8 | ) |
160677 5 | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 901593 25 | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) |
160677 5 | × | 12 | × | 11 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 901593 25 | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) |
160677 5 | × | 12 | × | 11 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | = | 901593 25 | × | 12 | × | 11 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) |
21209364 5 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | = | 119010276 25 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) |
21209364 5 | × | 12 | × | 8 | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 119010276 25 | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | ( | 12 | × | 8 | ) |
21209364 5 | × | 12 | × | 8 | ( | 12 | × | 8 | ) | + | 160677 5 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | + | 4869 20 | x | ( | 1 | + | x | ÷ | ( | 12 | × | 8 | ) | ) | ( | 12 | × | 11 | ) | = | 119010276 25 | × | 12 | × | 8 | ( | 12 | × | 8 | ) | + | 901593 25 | x | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) | − | 1353 100 | ( | 12 | × | 11 | ) | ( | 12 | × | 11 | ) | ( | 12 | × | 8 | ) |