| ( | x | ÷ | ( | x | + | 539 5 | ) | − | 5 2 | ) | ÷ | ( | x | ÷ | ( | x | + | 277 2 | ) | − | 5 2 | ) | = | 31 5 | ÷ | 24 5 |
| 方程两边同时乘以: | ( | x | ÷ | ( | x | + | 277 2 | ) | − | 5 2 | ) |
| ( | x | ÷ | ( | x | + | 539 5 | ) | − | 5 2 | ) | = | 31 5 | ÷ | 24 5 | × | ( | x | ÷ | ( | x | + | 277 2 | ) | − | 5 2 | ) |
| x | ÷ | ( | x | + | 539 5 | ) | − | 5 2 | = | 31 5 | ÷ | 24 5 | × | ( | x | ÷ | ( | x | + | 277 2 | ) | − | 5 2 | ) |
| x | ÷ | ( | x | + | 539 5 | ) | − | 5 2 | = | 31 5 | ÷ | 24 5 | × | x | ÷ | ( | x | + | 277 2 | ) | − | 31 5 | ÷ | 24 5 | × | 5 2 |
| x | ÷ | ( | x | + | 539 5 | ) | − | 5 2 | = | 31 24 | x | ÷ | ( | x | + | 277 2 | ) | − | 155 48 |
| 方程两边同时乘以: | ( | x | + | 539 5 | ) | , | ( | x | + | 277 2 | ) |
| x | ( | x | + | 277 2 | ) | − | 5 2 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) | = | 31 24 | x | ( | x | + | 539 5 | ) | − | 155 48 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) |
| x | x | + | x | × | 277 2 | − | 5 2 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) | = | 31 24 | x | ( | x | + | 539 5 | ) | − | 155 48 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) |
| x | x | + | x | × | 277 2 | − | 5 2 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 31 24 | x | × | 539 5 | − | 155 48 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) |
| x | x | + | x | × | 277 2 | − | 5 2 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) |
| x | x | + | 277 2 | x | − | 5 2 | x | ( | x | + | 277 2 | ) | − | 5 2 | × | 539 5 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | ( | x | + | 539 5 | ) | ( | x | + | 277 2 | ) |
| x | x | + | 277 2 | x | − | 5 2 | x | ( | x | + | 277 2 | ) | − | 5 2 | × | 539 5 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | x | ( | x | + | 277 2 | ) | − | 155 48 | × | 539 5 | ( | x | + | 277 2 | ) |
| x | x | + | 277 2 | x | − | 5 2 | x | ( | x | + | 277 2 | ) | − | 539 2 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | x | ( | x | + | 277 2 | ) | − | 16709 48 | ( | x | + | 277 2 | ) |
| x | x | + | 277 2 | x | − | 5 2 | x | x | − | 5 2 | x | × | 277 2 | − | 539 2 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | x | ( | x | + | 277 2 | ) | − | 16709 48 | ( | x | + | 277 2 | ) |
| x | x | + | 277 2 | x | − | 5 2 | x | x | − | 5 2 | x | × | 277 2 | − | 539 2 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | x | x | − | 155 48 | x | × | 277 2 | − | 16709 48 |
| x | x | + | 277 2 | x | − | 5 2 | x | x | − | 1385 4 | x | − | 539 2 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | + | 16709 120 | x | − | 155 48 | x | x | − | 42935 96 | x | − | 16709 48 | ( | x | + | 277 2 | ) |
| x | x | − | 831 4 | x | − | 5 2 | x | x | − | 539 2 | ( | x | + | 277 2 | ) | = | 31 24 | x | x | − | 147839 480 | x | − | 155 48 | x | x | − | 16709 48 | ( | x | + | 277 2 | ) |
| x | x | − | 831 4 | x | − | 5 2 | x | x | − | 539 2 | x | − | 539 2 | × | 277 2 | = | 31 24 | x | x | − | 147839 480 | x | − | 155 48 | x | x | − | 16709 48 | ( | x | + | 277 2 | ) |
| x | x | − | 831 4 | x | − | 5 2 | x | x | − | 539 2 | x | − | 539 2 | × | 277 2 | = | 31 24 | x | x | − | 147839 480 | x | − | 155 48 | x | x | − | 16709 48 | x | − | 16709 48 | × | 277 2 |
| x | x | − | 831 4 | x | − | 5 2 | x | x | − | 539 2 | x | − | 149303 4 | = | 31 24 | x | x | − | 147839 480 | x | − | 155 48 | x | x | − | 16709 48 | x | − | 4628393 96 |
| x | x | − | 1909 4 | x | − | 5 2 | x | x | − | 149303 4 | = | 31 24 | x | x | − | 314929 480 | x | − | 155 48 | x | x | − | 4628393 96 |