总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 ((1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9 的值.
题型:数学计算
解:
((1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=((-97)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+(1300-1147)^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+(1200-1147)^2)/9
=(-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2)/9
=68210/9
=7578.888889 答案:((1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2)/9=7578.888889你的问题在这里没有得到解决?请到 热门难题 里面看看吧!