总述:本次共解1题。其中
☆算术计算1题
〖1/1算式〗
作业:求算式 (1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2 的值.
题型:数学计算
解:
(1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+(1300-1147)^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+(1200-1147)^2
=-97^2+(-47)^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+-47^2+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+(-67)^2+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+4489+(-27)^2+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+4489+729+53^2+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+4489+729+2809+103^2+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+4489+729+2809+10609+(-107)^2+(-17)^2+153^2+53^2
=9409+2209+4489+729+2809+10609+11449+(-17)^2+153^2+53^2
=9409+2209+4489+729+2809+10609+11449+289+153^2+53^2
=9409+2209+4489+729+2809+10609+11449+289+23409+53^2
=9409+2209+4489+729+2809+10609+11449+289+23409+2809
=11618+4489+729+2809+10609+11449+289+23409+2809
=16107+729+2809+10609+11449+289+23409+2809
=16836+2809+10609+11449+289+23409+2809
=19645+10609+11449+289+23409+2809
=30254+11449+289+23409+2809
=41703+289+23409+2809
=41992+23409+2809
=65401+2809
=68210 答案:(1050-1147)^2+(1100-1147)^2+(1080-1147)^2+(1120-1147)^2+(1200-1147)^2+(1250-1147)^2+(1040-1147)^2+(1130-1147)^2+(1300-1147)^2+(1200-1147)^2=68210你的问题在这里没有得到解决?请到 热门难题 里面看看吧!