| ( | 2 | x | − | 3 | ) | ÷ | ( | x | + | 2 | ) | + | ( | 3 | − | 2 | x | ) | ÷ | ( | x | − | 2 | ) | = | 4 | ÷ | ( | 2 | − | x | ) |
| 方程两边同时乘以: | ( | x | + | 2 | ) | , | ( | 2 | − | x | ) |
| ( | 2 | x | − | 3 | ) | ( | 2 | − | x | ) | + | ( | 3 | − | 2 | x | ) | ÷ | ( | x | − | 2 | ) | × | ( | x | + | 2 | ) | ( | 2 | − | x | ) | = | 4 | ( | x | + | 2 | ) |
| 2 | x | ( | 2 | − | x | ) | − | 3 | ( | 2 | − | x | ) | + | ( | 3 | − | 2 | x | ) | ÷ | ( | x | − | 2 | ) | × | ( | x | + | 2 | ) | ( | 2 | − | x | ) | = | 4 | ( | x | + | 2 | ) |
| 2 | x | ( | 2 | − | x | ) | − | 3 | ( | 2 | − | x | ) | + | ( | 3 | − | 2 | x | ) | ÷ | ( | x | − | 2 | ) | × | ( | x | + | 2 | ) | ( | 2 | − | x | ) | = | 4 | x | + | 4 | × | 2 |
| 2 | x | ( | 2 | − | x | ) | − | 3 | ( | 2 | − | x | ) | + | ( | 3 | − | 2 | x | ) | ÷ | ( | x | − | 2 | ) | × | ( | x | + | 2 | ) | ( | 2 | − | x | ) | = | 4 | x | + | 8 |
| 方程两边同时乘以: | ( | x | − | 2 | ) |
| 2 | x | ( | 2 | − | x | ) | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | + | ( | 3 | − | 2 | x | ) | ( | x | + | 2 | ) | ( | 2 | − | x | ) | = | 4 | x | ( | x | − | 2 | ) | + | 8 | ( | x | − | 2 | ) |
| 2 | x | × | 2 | ( | x | − | 2 | ) | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | + | ( | 3 | − | 2 | x | ) | = | 4 | x | ( | x | − | 2 | ) | + | 8 | ( | x | − | 2 | ) |
| 2 | x | × | 2 | ( | x | − | 2 | ) | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | + | ( | 3 | − | 2 | x | ) | = | 4 | x | x | − | 4 | x | × | 2 | + | 8 | ( | x | − | 2 | ) |
| 4 | x | ( | x | − | 2 | ) | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | + | ( | 3 | − | 2 | x | ) | ( | x | + | 2 | ) | = | 4 | x | x | − | 8 | x | + | 8 | ( | x | − | 2 | ) |
| 4 | x | x | − | 4 | x | × | 2 | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | = | 4 | x | x | − | 8 | x | + | 8 | ( | x | − | 2 | ) |
| 4 | x | x | − | 4 | x | × | 2 | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | = | 4 | x | x | − | 8 | x | + | 8 | x | − | 8 | × | 2 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | = | 4 | x | x | − | 8 | x | + | 8 | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | ( | x | − | 2 | ) | − | 3 | ( | 2 | − | x | ) | ( | x | − | 2 | ) | = | 4 | x | x | − | 0 | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 2 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 8 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 14 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 14 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 14 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 20 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |
| 4 | x | x | − | 20 | x | − | 2 | x | x | x | + | 4 | x | x | = | 4 | x | x | − | 16 |