| 95 | = | 5 | ÷ | ( | 1 | + | x | ) | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 方程两边同时乘以: | ( | 1 | + | x | ) |
| 95 | ( | 1 | + | x | ) | = | 5 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | ( | 1 | + | x | ) |
| 95 | × | 1 | + | 95 | x | = | 5 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | ( | 1 | + | x | ) |
| 95 | × | 1 | + | 95 | x | = | 5 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | 1 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | x |
| 95 | + | 95 | x | = | 5 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | x |
| 方程两边同时乘以: | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 103 | + | 103 | ÷ | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | × | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 方程两边同时乘以: | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | x |
| 95 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ÷ | 2 | × | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | = | 5 | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ÷ | 2 | × | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | = | 5 | × | 1 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ÷ | 2 | × | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 |
| 95 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 |
| 95 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | = | 5 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 |
| 95 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | = | 5 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | = | 5 | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 103 | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | = | 5 | × | 1 | ( | 1 | + | x | ÷ | 2 | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) |
| 95 | ( | 1 | + | x | ÷ | 2 | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | = | 5 | ( | 1 | + | x | ÷ | 2 | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | + | 95 | x | ÷ | 2 | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | = | 5 | ( | 1 | + | x | ÷ | 2 | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) |
| 95 | × | 1 | + | 95 | x | ÷ | 2 | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | = | 5 | × | 1 | + | 5 | x | ÷ | 2 | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 |
| 95 | + | 95 2 | x | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 95 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 95 | x | ( | 1 | + | x | ÷ | 2 | ) | = | 5 | + | 5 2 | x | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) |
| 95 | + | 95 2 | x | + | 95 | x | × | 1 | + | 95 | x | x | ÷ | 2 | + | 95 2 | x | = | 5 | + | 5 2 | x | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) | + | 5 2 | x | ( | ( | 1 | + | x | ) | ( | 1 | + | x | ÷ | 2 | ) | ) | + | 5 | x | ( | 1 | + | x | ÷ | 2 | ) |