Mathematics
语言:中文
Language:English
current location:Solving equations online > On line Solution of Monovariate Equation > The history of univariate equation calculation
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    0.8062x-0.0923sin(2πx)-0.09425=0.2122(sin(πx))^3+0.0355sin(πx)+0.0355sin(1.25π-2πx)
    -x^2+x-1
    0.6611x-0.0763sin(2πx)-0.0759 = 0.2122(sin(πx))^3+0.0623sin(πx)+0.0623sin(1.25π-2πx)
    8400/(x+102*0.12)+10000/(x+102*0.16)=150
    10000/(x+101*0.16)+5100/(x+101*0.16)+10000/(x)=150
    ex+lnx=1
    e^x+lnx=1
    lnx=1/x

Home page << page1511 page1512 page1513 page1514 page1515 ... ... page1517 page1518 page1519 page1520 page1521 >> Last page 31249 pages in total