Mathematics
语言:中文
Language:English
current location:Solving equations online > On line Solution of Monovariate Equation > The history of univariate equation calculation
    (3.57+1)/1.75=(1.1-x)/x(1.175-x)
    (6.32+1)/1.75=(1.1-x)/x(1.175-x)
    1-1/(1+(h/95/2)^2)^(3/2) = 1.462/2.755
    (7.96+1)/1.75=(1.1-x)/x(1.175-x)
    (10.25+1)/1.75=(1.1-x)/x(1.175-x)
    1-1/(1+(h/100.5/2)^2)^(3/2) = 2.064/2.755
    1-1/(1+(h/100.5/2)^2)^(3/2) = 0.086/2.087
    (11.63+1)/1.75=(1.1-x)/x(1.175-x)
    1-1/(1+(h/100.5/2)^2)^(3/2) = 0.586/2.087
    126.64=x/2*(78.38+8.56x)
    0.973x-0.13664sin(2πx)-0.11375=0.2122(sin(πx))^3+0.037sin(πx)+0.037sin(1.25π-2πx)
    3800x-5000(1+x)*8%*50%=0
    1-1/(1+(h/95/2)^2)^(3/2) = 1.732/2.019
    (13+1)/1.75=(1.1-x)/x(1.175-x)
    1/(d)+1/(d+1)+1/(d+4)=1/(d+2)
    (3x+2)/5=1
    3x=1
    1-1/(1+(h/95/2)^2)^(3/2) = 0.874/0.88
    x/280+6000=(x+1000000)/240
    1-1/(1+(h/95/2)^2)^(3/2) = 0.808/0.88

Home page << page1437 page1438 page1439 page1440 page1441 ... ... page1443 page1444 page1445 page1446 page1447 >> Last page 31249 pages in total