Mathematics
语言:
中文
Language:English
==equ==
Unary equation
Multivariate equation
==cal==
Solution inequality
Mathematical calculation
Fractional calculation
Mathematical statistics
Resolving prime factor
Fraction and Decimal Interactions
Lenders ToolBox
==LiAl==
Determinant
Matrix multiplication
Inverse matrix
==der==
Derivative function
==img==
Function image
==que==
Q&A
current location:Solving equations online >
On line Solution of Monovariate Equation
> The history of univariate equation calculation
(3.57+1)/1.75=(1.1-x)/x(1.175-x)
(6.32+1)/1.75=(1.1-x)/x(1.175-x)
1-1/(1+(h/95/2)^2)^(3/2) = 1.462/2.755
(7.96+1)/1.75=(1.1-x)/x(1.175-x)
(10.25+1)/1.75=(1.1-x)/x(1.175-x)
1-1/(1+(h/100.5/2)^2)^(3/2) = 2.064/2.755
1-1/(1+(h/100.5/2)^2)^(3/2) = 0.086/2.087
(11.63+1)/1.75=(1.1-x)/x(1.175-x)
1-1/(1+(h/100.5/2)^2)^(3/2) = 0.586/2.087
126.64=x/2*(78.38+8.56x)
0.973x-0.13664sin(2πx)-0.11375=0.2122(sin(πx))^3+0.037sin(πx)+0.037sin(1.25π-2πx)
3800x-5000(1+x)*8%*50%=0
1-1/(1+(h/95/2)^2)^(3/2) = 1.732/2.019
(13+1)/1.75=(1.1-x)/x(1.175-x)
1/(d)+1/(d+1)+1/(d+4)=1/(d+2)
(3x+2)/5=1
3x=1
1-1/(1+(h/95/2)^2)^(3/2) = 0.874/0.88
x/280+6000=(x+1000000)/240
1-1/(1+(h/95/2)^2)^(3/2) = 0.808/0.88
Home page
<<
page1437
page1438
page1439
page1440
page1441
... ...
page1443
page1444
page1445
page1446
page1447
>>
Last page
31249 pages in total