Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{l}{(t(1 + a{(\frac{x}{c})}^{b}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{l}{(ta(\frac{x}{c})^{b} + t)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{l}{(ta(\frac{x}{c})^{b} + t)}\right)}{dx}\\=&(\frac{-(ta((\frac{x}{c})^{b}((0)ln(\frac{x}{c}) + \frac{(b)(\frac{1}{c})}{(\frac{x}{c})})) + 0)}{(ta(\frac{x}{c})^{b} + t)^{2}})l + 0\\=&\frac{-ltab(\frac{x}{c})^{b}}{(ta(\frac{x}{c})^{b} + t)^{2}x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return