There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - ln(x))}{({x}^{2} + ln(x))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x^{2} + ln(x))} - \frac{ln(x)}{(x^{2} + ln(x))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x^{2} + ln(x))} - \frac{ln(x)}{(x^{2} + ln(x))}\right)}{dx}\\=&(\frac{-(2x + \frac{1}{(x)})}{(x^{2} + ln(x))^{2}})x^{2} + \frac{2x}{(x^{2} + ln(x))} - (\frac{-(2x + \frac{1}{(x)})}{(x^{2} + ln(x))^{2}})ln(x) - \frac{1}{(x^{2} + ln(x))(x)}\\=&\frac{2xln(x)}{(x^{2} + ln(x))^{2}} + \frac{ln(x)}{(x^{2} + ln(x))^{2}x} + \frac{2x}{(x^{2} + ln(x))} - \frac{2x^{3}}{(x^{2} + ln(x))^{2}} - \frac{x}{(x^{2} + ln(x))^{2}} - \frac{1}{(x^{2} + ln(x))x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !