Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2{x}^{3} - {x}^{2} + 6x + 1)}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8x^{9} - 12x^{8} + 78x^{7} - 61x^{6} + 222x^{5} - 33x^{4} + 186x^{3} + 105x^{2} + 18x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8x^{9} - 12x^{8} + 78x^{7} - 61x^{6} + 222x^{5} - 33x^{4} + 186x^{3} + 105x^{2} + 18x + 1\right)}{dx}\\=&8*9x^{8} - 12*8x^{7} + 78*7x^{6} - 61*6x^{5} + 222*5x^{4} - 33*4x^{3} + 186*3x^{2} + 105*2x + 18 + 0\\=&72x^{8} - 96x^{7} + 546x^{6} - 366x^{5} + 1110x^{4} - 132x^{3} + 558x^{2} + 210x + 18\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return