There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}{e}^{(x - 1)} - \frac{{x}^{3}}{3} - {x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}{e}^{(x - 1)} - \frac{1}{3}x^{3} - x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}{e}^{(x - 1)} - \frac{1}{3}x^{3} - x^{2}\right)}{dx}\\=&2x{e}^{(x - 1)} + x^{2}({e}^{(x - 1)}((1 + 0)ln(e) + \frac{(x - 1)(0)}{(e)})) - \frac{1}{3}*3x^{2} - 2x\\=&2x{e}^{(x - 1)} + x^{2}{e}^{(x - 1)} - x^{2} - 2x\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !