There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(3 - 2x)}^{2})}{(2(5{(x - 1)}^{2} + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x^{2}}{(10x^{2} - 20x + 12)} - \frac{12x}{(10x^{2} - 20x + 12)} + \frac{9}{(10x^{2} - 20x + 12)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x^{2}}{(10x^{2} - 20x + 12)} - \frac{12x}{(10x^{2} - 20x + 12)} + \frac{9}{(10x^{2} - 20x + 12)}\right)}{dx}\\=&4(\frac{-(10*2x - 20 + 0)}{(10x^{2} - 20x + 12)^{2}})x^{2} + \frac{4*2x}{(10x^{2} - 20x + 12)} - 12(\frac{-(10*2x - 20 + 0)}{(10x^{2} - 20x + 12)^{2}})x - \frac{12}{(10x^{2} - 20x + 12)} + 9(\frac{-(10*2x - 20 + 0)}{(10x^{2} - 20x + 12)^{2}})\\=&\frac{-80x^{3}}{(10x^{2} - 20x + 12)^{2}} + \frac{320x^{2}}{(10x^{2} - 20x + 12)^{2}} + \frac{8x}{(10x^{2} - 20x + 12)} - \frac{420x}{(10x^{2} - 20x + 12)^{2}} - \frac{12}{(10x^{2} - 20x + 12)} + \frac{180}{(10x^{2} - 20x + 12)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !