Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{10196.452x}{(129.96{x}^{4} - 20392.949{x}^{2} + 1000000)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{10196.452x}{(129.96x - 20392.949x + 1000000)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{10196.452x}{(129.96x - 20392.949x + 1000000)}\right)}{dx}\\=&10196.452(\frac{-(129.96 - 20392.949 + 0)}{(129.96x - 20392.949x + 1000000)^{2}})x + \frac{10196.452}{(129.96x - 20392.949x + 1000000)}\\=&\frac{206610594.715028x}{(129.96x - 20392.949x + 1000000)(129.96x - 20392.949x + 1000000)} + \frac{10196.452}{(129.96x - 20392.949x + 1000000)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return