Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{10}ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{10}ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{10}ln(x)\right)}{dx}\\=&10x^{9}ln(x) + \frac{x^{10}}{(x)}\\=&10x^{9}ln(x) + x^{9}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 10x^{9}ln(x) + x^{9}\right)}{dx}\\=&10*9x^{8}ln(x) + \frac{10x^{9}}{(x)} + 9x^{8}\\=&90x^{8}ln(x) + 19x^{8}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 90x^{8}ln(x) + 19x^{8}\right)}{dx}\\=&90*8x^{7}ln(x) + \frac{90x^{8}}{(x)} + 19*8x^{7}\\=&720x^{7}ln(x) + 242x^{7}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 720x^{7}ln(x) + 242x^{7}\right)}{dx}\\=&720*7x^{6}ln(x) + \frac{720x^{7}}{(x)} + 242*7x^{6}\\=&5040x^{6}ln(x) + 2414x^{6}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return