Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{2}(Ax + B){e}^{(3x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Ax^{3}{e}^{(3x)} + Bx^{2}{e}^{(3x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Ax^{3}{e}^{(3x)} + Bx^{2}{e}^{(3x)}\right)}{dx}\\=&A*3x^{2}{e}^{(3x)} + Ax^{3}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + B*2x{e}^{(3x)} + Bx^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&3Ax^{2}{e}^{(3x)} + 3Ax^{3}{e}^{(3x)} + 2Bx{e}^{(3x)} + 3Bx^{2}{e}^{(3x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3Ax^{2}{e}^{(3x)} + 3Ax^{3}{e}^{(3x)} + 2Bx{e}^{(3x)} + 3Bx^{2}{e}^{(3x)}\right)}{dx}\\=&3A*2x{e}^{(3x)} + 3Ax^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 3A*3x^{2}{e}^{(3x)} + 3Ax^{3}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 2B{e}^{(3x)} + 2Bx({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)})) + 3B*2x{e}^{(3x)} + 3Bx^{2}({e}^{(3x)}((3)ln(e) + \frac{(3x)(0)}{(e)}))\\=&6Ax{e}^{(3x)} + 18Ax^{2}{e}^{(3x)} + 9Ax^{3}{e}^{(3x)} + 2B{e}^{(3x)} + 12Bx{e}^{(3x)} + 9Bx^{2}{e}^{(3x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return