There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27n - 27){({(n - 4 + \frac{14}{n})}^{\frac{1}{2}})}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27(n + \frac{14}{n} - 4)^{2}n - 27(n + \frac{14}{n} - 4)^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27(n + \frac{14}{n} - 4)^{2}n - 27(n + \frac{14}{n} - 4)^{2}\right)}{dx}\\=&27(2(n + \frac{14}{n} - 4)(0 + 0 + 0))n + 0 - 27(2(n + \frac{14}{n} - 4)(0 + 0 + 0))\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !