There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27n - 27){({(n - 4 + \frac{14}{n})}^{\frac{1}{2}})}^{5}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}n - 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}n - 27(n + \frac{14}{n} - 4)^{\frac{5}{2}}\right)}{dn}\\=&27(\frac{5}{2}(n + \frac{14}{n} - 4)^{\frac{3}{2}}(1 + \frac{14*-1}{n^{2}} + 0))n + 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} - 27(\frac{5}{2}(n + \frac{14}{n} - 4)^{\frac{3}{2}}(1 + \frac{14*-1}{n^{2}} + 0))\\=& - \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n} + \frac{135(n + \frac{14}{n} - 4)^{\frac{3}{2}}n}{2} + \frac{945(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{n^{2}} + 27(n + \frac{14}{n} - 4)^{\frac{5}{2}} - \frac{135(n + \frac{14}{n} - 4)^{\frac{3}{2}}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !