There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27{n}^{2} - 99n + 180)(n - 4 + \frac{14}{n})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27n^{3} + 954n - 207n^{2} + \frac{2520}{n} - 2106\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27n^{3} + 954n - 207n^{2} + \frac{2520}{n} - 2106\right)}{dn}\\=&27*3n^{2} + 954 - 207*2n + \frac{2520*-1}{n^{2}} + 0\\=&81n^{2} - 414n - \frac{2520}{n^{2}} + 954\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !