There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (27n - 27)({n}^{2} - 8n + 196{\frac{1}{n}}^{2} - \frac{112}{n} + 44)\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 27n^{3} - 243n^{2} + \frac{8316}{n} + 1404n - \frac{5292}{n^{2}} - 4212\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 27n^{3} - 243n^{2} + \frac{8316}{n} + 1404n - \frac{5292}{n^{2}} - 4212\right)}{dn}\\=&27*3n^{2} - 243*2n + \frac{8316*-1}{n^{2}} + 1404 - \frac{5292*-2}{n^{3}} + 0\\=&81n^{2} - 486n - \frac{8316}{n^{2}} + \frac{10584}{n^{3}} + 1404\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !