There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (n - 4 + \frac{14}{n})(n - 4 + \frac{14}{n})\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = n^{2} - 8n + \frac{196}{n^{2}} - \frac{112}{n} + 44\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( n^{2} - 8n + \frac{196}{n^{2}} - \frac{112}{n} + 44\right)}{dn}\\=&2n - 8 + \frac{196*-2}{n^{3}} - \frac{112*-1}{n^{2}} + 0\\=&2n - \frac{392}{n^{3}} + \frac{112}{n^{2}} - 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !