There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(4{x}^{3} - 23x + 15)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(4x^{3} - 23x + 15)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(4x^{3} - 23x + 15)\right)}{dx}\\=&\frac{(4*3x^{2} - 23 + 0)}{(4x^{3} - 23x + 15)}\\=&\frac{12x^{2}}{(4x^{3} - 23x + 15)} - \frac{23}{(4x^{3} - 23x + 15)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{12x^{2}}{(4x^{3} - 23x + 15)} - \frac{23}{(4x^{3} - 23x + 15)}\right)}{dx}\\=&12(\frac{-(4*3x^{2} - 23 + 0)}{(4x^{3} - 23x + 15)^{2}})x^{2} + \frac{12*2x}{(4x^{3} - 23x + 15)} - 23(\frac{-(4*3x^{2} - 23 + 0)}{(4x^{3} - 23x + 15)^{2}})\\=&\frac{-144x^{4}}{(4x^{3} - 23x + 15)^{2}} + \frac{552x^{2}}{(4x^{3} - 23x + 15)^{2}} + \frac{24x}{(4x^{3} - 23x + 15)} - \frac{529}{(4x^{3} - 23x + 15)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !