Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(1 - a)}{(1 - a{e}^{t})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{a}{(-a{e}^{t} + 1)} + \frac{1}{(-a{e}^{t} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{a}{(-a{e}^{t} + 1)} + \frac{1}{(-a{e}^{t} + 1)}\right)}{dx}\\=& - (\frac{-(-a({e}^{t}((0)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{(-a{e}^{t} + 1)^{2}})a + 0 + (\frac{-(-a({e}^{t}((0)ln(e) + \frac{(t)(0)}{(e)})) + 0)}{(-a{e}^{t} + 1)^{2}})\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return