There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 + x)ln(\frac{(100 + x)}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{100}{x} + 1) + xln(\frac{100}{x} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{100}{x} + 1) + xln(\frac{100}{x} + 1)\right)}{dx}\\=&\frac{(\frac{100*-1}{x^{2}} + 0)}{(\frac{100}{x} + 1)} + ln(\frac{100}{x} + 1) + \frac{x(\frac{100*-1}{x^{2}} + 0)}{(\frac{100}{x} + 1)}\\=&\frac{-100}{(\frac{100}{x} + 1)x} + ln(\frac{100}{x} + 1) - \frac{100}{(\frac{100}{x} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !