There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(\frac{(2 - {x}^{4})}{3})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(-x^{4} + 2)^{\frac{1}{2}}}{3^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(-x^{4} + 2)^{\frac{1}{2}}}{3^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(-4x^{3} + 0)}{(-x^{4} + 2)^{\frac{1}{2}}})}{3^{\frac{1}{2}}}\\=&\frac{2x^{3}}{-3^{\frac{1}{2}}(-x^{4} + 2)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !