Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of d is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (d)(1 - (m))z{(\frac{(-x - (c)z)}{((d)(m)z)})}^{(\frac{(m)}{((m) - 1)})}\ with\ respect\ to\ d:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = zd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( zd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}\right)}{dd}\\=&z(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} + zd((\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{mzd} - \frac{c}{md}) + \frac{(\frac{m}{(m - 1)})(\frac{-x*-1}{mzd^{2}} - \frac{c*-1}{md^{2}})}{(\frac{-x}{mzd} - \frac{c}{md})})) - mz(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - mzd((\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-x}{mzd} - \frac{c}{md}) + \frac{(\frac{m}{(m - 1)})(\frac{-x*-1}{mzd^{2}} - \frac{c*-1}{md^{2}})}{(\frac{-x}{mzd} - \frac{c}{md})}))\\=&z(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} + \frac{x(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} + \frac{zc(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} - mz(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})} - \frac{mx(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d} - \frac{mzc(\frac{-x}{mzd} - \frac{c}{md})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-x}{mzd} - \frac{c}{md})d}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return