There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ d(1 - m)z({(\frac{(-x - cz)mz}{d})}^{(\frac{m}{(m - 1)})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = dz(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})} - dmz(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( dz(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})} - dmz(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}\right)}{dx}\\=&dz((\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-mzx}{d} - \frac{mz^{2}c}{d}) + \frac{(\frac{m}{(m - 1)})(\frac{-mz}{d} + 0)}{(\frac{-mzx}{d} - \frac{mz^{2}c}{d})})) - dmz((\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}(((\frac{-(0 + 0)}{(m - 1)^{2}})m + 0)ln(\frac{-mzx}{d} - \frac{mz^{2}c}{d}) + \frac{(\frac{m}{(m - 1)})(\frac{-mz}{d} + 0)}{(\frac{-mzx}{d} - \frac{mz^{2}c}{d})}))\\=&\frac{-m^{2}z^{2}(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-mzx}{d} - \frac{mz^{2}c}{d})} + \frac{m^{3}z^{2}(\frac{-mzx}{d} - \frac{mz^{2}c}{d})^{(\frac{m}{(m - 1)})}}{(m - 1)(\frac{-mzx}{d} - \frac{mz^{2}c}{d})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !