There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ d(1 - m)z({(\frac{(-x - cz)mz}{d})}^{(\frac{m}{m} - 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = dz - dmz\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( dz - dmz\right)}{dx}\\=&(\frac{0(\frac{-mz}{d} + 0)}{(\frac{-mzx}{d} - \frac{mz^{2}c}{d})})dz + 0 - (\frac{0(\frac{-mz}{d} + 0)}{(\frac{-mzx}{d} - \frac{mz^{2}c}{d})})dmz + 0\\=& - 0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !