Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2i(pi + \frac{pi(X)}{50} - 50)}{p} + sin(\frac{pi(X - 50)}{50})\ with\ respect\ to\ X:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{25}i^{2}X + 2i^{2} - \frac{100i}{p} + sin(\frac{1}{50}piX - pi)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{25}i^{2}X + 2i^{2} - \frac{100i}{p} + sin(\frac{1}{50}piX - pi)\right)}{dX}\\=&\frac{1}{25}i^{2} + 0 + 0 + cos(\frac{1}{50}piX - pi)(\frac{1}{50}pi + 0)\\=&\frac{i^{2}}{25} + \frac{picos(\frac{1}{50}piX - pi)}{50}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return