Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ (-a + b + c + d)(a - b + c + d)(a + b - c + d)(a + b + c - d)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8abcd + 2a^{2}d^{2} + 2a^{2}c^{2} + 2a^{2}b^{2} + 2b^{2}c^{2} + 2b^{2}d^{2} - a^{4} - b^{4} + 2c^{2}d^{2} - c^{4} - d^{4}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8abcd + 2a^{2}d^{2} + 2a^{2}c^{2} + 2a^{2}b^{2} + 2b^{2}c^{2} + 2b^{2}d^{2} - a^{4} - b^{4} + 2c^{2}d^{2} - c^{4} - d^{4}\right)}{dx}\\=&0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return